
MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 121, JANUARY, 1973 

Discrete Green's Functions 

By G. T. McAllister and E. F. Sabotka 

Abstract. Let G(P; Q) be the discrete Green's function over a discrete h-convex region 
Q of the plane; i.e., a(P)G.,(P; Q) + c(P)G,(P; Q) = - b(P; Q)/h2 for P E Qh, G(P; Q) = 0 
for P E aih. Assume that a(P) and c(P) are Holder continuous over Q and positive. We 
show that ID(-)G(P; Q)l < Am/p'Q and 1Db(m)G(P; Q)l -< Bmd(Q)/pp1, where D(m) is 
an mth order difference quotient with respect to the components of P or Q, and i(m) 
denotes an mth order difference quotient only with respect to the components of P. 

Introduction. Place a square grid on the plane with grid width h; grid points 
are P = (mh, nh) where m and n are integers. If P = (x, y) is a grid point, the neighbors 
of P are the points P1 = (x + h, y), P2 = (x, y + h), P3 = (x - h, y), and P4 = 

(x, y - h). 
Let Q be a plane region. Let Qh be the set of grid points P EE Q such that the four 

neighbors of P are in U. Let a Oh be that set of grid points in Q with at least one neigh- 
bor in the exterior of U. 

Let W(P) be defined on Oh + a?2h. Let P E Oh. Then we make the following 
definitions: h Wz(P) = W(P1) - W(P), hW,(P) = W(P) - W(P3), hW(P) = W(P2) - 
W(P), h Wf(P) = W(P) - W(P4), W.z(P) = (W.(P))., Wvf(P) = (Wy(P)),, and 
Wz8(P) = (W.(P))S. 

Let a(P) and c(P) be Hilder continuous functions on Q; let X and L denote the 
positive minimum and maximum of these functions over Q. Let Q E Oh and let 
G(P; Q) be the solution to the problem 

(*) a(P)G.z(P; Q) + c(P)Gy(P; Q) = - 3(P; Q)/h2, P (E Oh, 

G(P; Q) = 0, P (E aQh; 

here difference quotients are with respect to the components of P and 3(P; Q) is 
the Kronecker symbol. 

In this paper, we obtain estimates on D(i) G(P; Q) and 1(m)G(P; Q) where D'(' 

denotes an mth order difference quotient with respect to the components of P and/or 
Q and j(m) G(P; Q) denotes an mth order difference quotient with respect to the 
components either of P or of Q. Basic to our methods of obtaining these estimates 
is the discrete analogue of the logarithm function as developed by McCrea and 
Whipple [7]. 

A significance of estimates of the type carried out in this paper is that they may 
be used, as in [5], to obtain pointwise a priori estimates on difference quotients of 
solutions to linear difference equations and these estimates may be used for the 
construction, as in [6], of a solution to nonlinear difference equations. Such a priori 
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estimates on difference quotients are also important in showing the convergence of 
specific numerical methods, as in [2], and in showing that solutions of difference 
equations converge-often these estimates give an order of convergence-to a solution 
'of the differential equation, as in [9] and [11]. 

Our results may also be used to obtain estimates on the difference between dif- 
ference quotients of the discrete and of the continuous Green's function; e.g. [8] 
and [10]. 

In the first five sections, we consider G(P; Q) only for the discrete Laplacian, 
i.e., a(P) -c(P)- 1. In Section 1, we obtain an estimate on G(P; Q) when Qh is a 
half-plane. Our estimates are of the type ID() G(P; Q)j < Am/P,Q and I3 (n)G(P; Q)j 
< Bmd(Q)/p7l (or I'm) G(P; Q)l _ Cmd(P)/ppl ) where PQ is the squared distance 
from P to Q plus h2, d(X) is the distance from X to the aQ,, and Am, Bm and Cm are 
absolute constants-explicitly computed-which are independent of h. Some of 
these estimates are similar to those in Widman [12] who considers the Green's func- 
tion for the continuous problem. In the discrete case, there are intrinsic difficulties 
which are not present in the continuous theory; e.g. we may not use any mapping 
techniques for the discrete problem. In Section 2 and in Section 3, we construct 
G(P; Q) for an infinite strip and for a rectangular region. From this construction, 
we obtain the same type of estimates as in Section 1. As a consequence of these 
sections, we may construct the G(P; Q) associated with the discrete Laplacian when- 
ever Q is a half-plane, quarter-plane, eighth-plane, strip, triangle or rectangle. 

We extend our estimates in Section 4 to general domains which are discrete 
h-convex (see the text for the definition). Here we discover that second-order dif- 
ference quotients of G(P; Q) exhibit a singularity in the neighborhood of an obtuse 
corner. The order of the singularity is slightly worse than that predicted in [4] for 
the continuous theory. 

In Section 5, we consider the general equation in (*) under the assumption that 
the coefficients a(P) and c(P) are a-Holder continuous over Q. These results repre- 
sent an extension and an improvement of those in [5]. 

Some of our estimates implicitly require that the mesh size h be sufficiently small 
but still 0(1). These restrictions on h will be clear from the context. A requirement 
on the size of h is not a limitation of the results as the interest is in the case that h 
gets arbitrarily small. 

1. The Discrete Green's Function for Half-Planes. Place a square grid over 
the plane with grid width h such that the origin is a grid point. Let Q = (, n) be an 
arbitrary but fixed grid point with n > 0. Let P = (x, y) be any grid point with 
y > 0; we denote the set of all such points by 7r+ if y > 0 and by d7r+ if y = 0. Let 
a and b be arbitrary real numbers and let L(a, b) be the discrete analogue of the 
logarithm function given by the relation [3, p. 422] or [7] 

(1) L(a, b) = 1 JW 1 - cos[bX/h] exp[- lal ,u/h] dX + log h - log 8 + 2,y (1) La, b)y 
2 

J s inhj. ulg 2 } 

where cos X + cosh ,u = 2 with ju/X /X- 1 as X -> 0, and y is Euler's constant. 
Let us define the function G(P; Q) by the relation 
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This mesh function is called the discrete Green's function for the upper half-plane. 
We shall show in this section that if D (i) G(P; Q) denotes an mth order difference 

quotient of G(P; Q) as described in the introduction, then there exist absolute con- 
stants Am and B., such that PQ IG(m)(P; Q)l _ Am and PPQ1 IG(m)(P; Q)j < Bmd(Q) 
where PPO is the square of the distance from P to Q plus h2 and d(X) is the distance 
from X to a7r+; Am and Bm are independent of h. 

Now we will prove a collection of results which will be used frequently in deriving 
our estimates. 

LEMMA 1.1. (a) For each mesh point P E 7r+, we have that 

AhG(P; Q) = [G(x + h, y; Q) + G(x - h, y; Q) 

+ G(x, y + h; Q) + G(x, y - h; Q) - 4G(P; Q)]/h2 _ - e(P; Q)/h2 

where 8(P; Q) = 0 if P $ Q, 8(P; Q) = 1 if P = Q, and G(P; Q) = 0 for P E dr+. 
(b) For all real numbers a and f3, we have that L(a, f3) = L(f3, a). In fact, L(a, j) 

is symmetric about the lines a = [, a = - /, a = 0 and ,B = 0. 
(c) For X and ,u related as in (1), we have that X/sh ,u > sin X/sh u > 0; for brevity, 

we use sh Xfor sinh X. 
(d) If X C (0, r), then X/(I.8) < u ? X. 
(e) The function f(,u) = (1 - exp(- a,u))/(exp(2,u) - 1) is positive and monotonically 

decreasing for a > 1. 
(f) If 0 < s < r, then exp(-ris),4/(l +exp u) and exp(-r-1 +s),u/(l +exp(-,M)) 

are positive and monotone decreasing functions. 
(g) The function A(,u) = { sh((r + 1),u) - sh(r,u) } exp(- s,u)/sh , is positive and 

monotone decreasing for s ? r + 1 with s > 0 and r > 0. 
(h) The following elementary inequalities are true: 

(i) ,u ch ,u > sh ,u for ,u > 0; 
(ii) sin x ? x for x> 0; 

(iii) a + 2 < a exp(-2,4) + 2 exp(a,u) where a > 1 and ,u > 0; 
(iv) 0 ? X/sh ,u ? 1.3 for X E [0, 7r] and cos X + ch ui = 2; 
(v) xexp(-air/lax) ? 1 if x > 0, a > 0, anda > 1. 

Proof. (a) follows closely the reasoning in [5] and (b) follows from (1). 
(c) From elementary considerations, 

X/sh ,u > sin X/sh ,u = ((1 - cos2 X)/((2- cos - 

= ((1 + cos )/(3- cos ))1/2 o 

(d) Let g(X) = X -u. Since cos X + ch ,u = 2 with u/X-> l as X -0, then 
g(O) = 0 and g'(X) = 1-((1 + cos X)/(3 - cos X))1/2 > 0. Therefore, for X E [0, n], 
X > u. Now observe that sh ,u _ X(1 + X2/24) for X E (0, 7r). Since d2X/d,42 = 
2 - cos X ch ,u *. sin3 X > 0 max X/,u = 7r/ch-1 (3) < 1.8. 

(e) Simply observe that f'(,u) ? 0 since a + 2 < a exp(- 2,u) + 2 exp(a,u). 
(f) Set g(,u) = exp(-r - 1 + s),u/(I + exp(-,u)); we see that 

9'(A) 

= {(-r-1 +s) exp((-r-1 +s),u)(l+ exp(-Ii))+exp(-r-1 +s)i,u}/( +exp(-i.t))2. 

Since 0 < s _ r, g'(,u) ? 0. The proof of the remaining results follows in a similar way. 
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(g) Since s _ r + 1, we may write s = t + r + 1 with t _ 0. Hence, 

A(u) = exp(-t,){exp A - exp(-(2r + l),) + exp(-2ru) - 1}/(exp(21A)- 1). 

Our result now follows from (e) and (f). 
(h) These results follow elementary considerations. 
We are now ready to establish the principal result of this section. Before we pro- 

ceed with this, however, we must make an obvious remark: If P = (x, y), Q = 

(, s), P 5 Q, and dpQ = (x _ t)2 + (y _ n)2, then 1/dpQ ? /2/ppQ. 
THEOREM 1.1. We have the following estimates for the discrete Green's function 

for the upper half-plane: 

(a) IG(P; Q)I _ (4.2)V/2 d(Q)/rppQ and IG(P; Q)I _ (4.2)V/2 d(P)/7rppQ. 

2 2~~~~~~~~~~~~~~ tGy(P; Q)I = (4G6)d(Q)tppQ, JG.(P; Q) | (8G.6)d(Q)t1rPpQ 

(b) JGJ(P; Q)j _ (I1.f5)d(Q)IppQ, IG_;(P; Q)j _ (2.5)(8.6)d(Q)/7rppQq 

IGy(P; Q)j = |G(P; Q)1, IG.(P; Q)j = IGi(P; Q)1. 

I Gf,(P; Q)|I = |GJP; Q)1, GtG(P; Q)j = JGJ(P; Q)I. 

(c Gy(P; Q)j _ (2.8) -\/2/7rppQ, |Gx(P; Q)j _ (2.3)-\/2/7rppQ, 

I Gf(P; Q)| I_ (2.5) IGy(P; Q)1, IG2(P; Q)j _ (2.5) IG.(P; Q)J. 

IG.t(P; Q)j = IGst(P; Q)j = IG.s(P; Q)j = IG21(P; Q)j < 14\/2/rpPQ, 

(d) IGyf(P; Q)I = IG,(P; Q)j = IGy,,(P; Q)j = jGf,(P; Q)j < 21/7rppQ, 

IGXY(P; Q)j = IG.(P; Q)j = jGTy(P; Q)j = IGT(P; Q)j < (6.9)/7rp2Q. 

(e) IGXY(P; Q)j _< (I0. 9)d(Q)l pp Q IG.2(P; Q)j _ (21 .2)d(Q) p3PQ , 
I GyV(P; Q)l I_ (21.2)d(Q)l 3PPQ 

Proof. (a) Let r = y/h, s = r7/h and t = Ix- j/h. Then 

1 1' sin(rX) sin(sX) exp(-t/.) 1 rX exp(- </|h ) 
JG(P; Q)j = - IhdX < -j dX 

<(1.3)r C < (13)r xp(-t) dX 
7ro 

< J1X3)r I exp(-tA)/(L.8) dX < (2.4)y/ir x - 

here we have used (c) and (d) of Lemma 1.1. By a similar line of reasoning, we may 
conclude that IG(P; Q)I < (2.4)7/ir Ix - 1. 

Now we write, using the symmetry of L(a, (), 

1 fr cos(tX) exp([-s + r],)(l - exp(-2r,u)) () G(P; Q)=y -0s~ dX, if r <_s 
(3) 27r sh,ui 

I JT cos(tX) exp([-r + s1A)(l - exp(-2s)i) dX, f s 
21r 0 sh ,u 

For r ? s, we have 
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1 1'2 exp [(r - sAr Ir.h.s. (3.1)1 < -Jo sh,.t dX 

7r r exp[(r - s)M] dX ? (1.8)r/ir Jr - sl. 

In a similar way, Ir.h.s.(3.2)1 ? (1.8)s/ir Ir - sI for r > s. Hence, we have IG(P; Q) ? 
(1.8)7/ir ly - n1 and /G(P; Q)l _ (1.8)y/r ly - n 

Combining the results of these two paragraphs yields the estimate, for P Q, 

J(4.2)n/Ir 

pPQ jG(P; Q)1 ? (lx - tj + ?y - -1) G(P; Q)j < ,and 

(4.2)y/ir. 

If P = Q, IG(Q; Q)j < (1.3)y/h or |G(Q; Q)j < (1.3)77/h. 
(b) We first consider 

Gv(P; Q) = [G(x, y + h; i, 7) -G(x, y; A, nq)I/h 

= [LQ - x, -ti - y -h) - L( - x, 17 - y - h) 

+ L( - x, -7 - y) - L( - x, q - y)I/h 

= [L(t, -s- r - 1)- L(t, s - r - 1) - L(t, -s - r) + L(t, s - r) ]/h 

(4) 1 r 
- 2 cos(A)A(,u) dX, for s > r + 1, 

= 2 f cos(A)B(,) dA, for s r, 

where A(,) is given in Lemma 1.1(g) and 

B(,) = exp(-r,.t)[exp(-M) - 1] sh(s,/sh A. 

Since A(,) is monotone decreasing in A and since, by Lemma 1.1(c), dl/dX = 
sin X/sh A _ 0, we have that A(,) is monotone decreasing in X; let A(X) denote A(A) 
as a function of X. Looking at (4.1), we write 

1 rfxrt f A(X) cos(tA) dX = - A (X) cos z dz. 

Decompose the interval [0, tir], for t $ 0, into { [0, 7r/2], [ir/2, 3 ir/2], * , [(2k + 1) r/2, 
tr] } or into {[0, 7r/2], [ir/2, 3 r/2], * , [(2k - 1)7r/2, (2k + 1)ir/2]} where, in the 
latter case, we have that (2k + l)ir = 2tnr. Observing the alteration in the signum 
of the integrand over each interval in either decomposition of [0, tfr], we conclude 
that (here we are using the estimates r - s < -1, and t exp((r - s)r/6t) < 1; we 
are assuming t 0 0 and 7 _ h) 

rT r ( r~~~~~~~r/2) t 

f A(A) cos(A) dX < 2 f A(,) cos(t) dX 

< (1.8)2 exp[(r - s)X/1.8]{ ((r - s)/l1.8) cos(tX) + t sin((r - s)X/ 1.8)} 1V'2t 

< (3.6)[s - r + 1.8]/((r _ S)2 + t2). 



64 G. T. MCALLISTER AND E. F. SABOTKA 

Therefore, 

(5) IGY(P; Q)I - (4.6)d(Q)/p Q if n > y + h. 
The case t = 0 is treated in a similar manner and we obtain the estimate, assuming 

7 _ y + h or y = 7 or 7 = 0 or x = i, 

(6) IGy(P; Q)I < (3.6)V/2 d(Q)/7rp'pQ. 

Now we consider the integral in (4.2). By elementary considerations, we obtain 
the identity 

B(u) cos(tX) dX = - cos(tX) exp[(s - r),u] dX/(1 + exp A) 

+ f cos(tX) exp[(-s - r)] dX/(1 + exp ji) 

and the inequality 
(T/2) t 

J B(,u) cos(tX) dX J cos(tX) exp[(s - r),a] dX/(1 + exp ,u) 

rT/2t 

+ f cos(tX) exp[-(r + s),u] dX/(1 + exp ,). 

Hence, if r # s, 

f B(,u) cos(t) dX 

(7 -. fcos(tX){exp[(s - r),] - exp[(-s - r)A]} dX/(1 + exp A) 

<- 2o{exp[(s - r)M] - exp[(-s - r)t]} dX 
= 2 j0~2 

< (1.3)[2s/r2s2]/2 ? (1.3)[s/(r -s)2] 

If r s (s _ 1 as we have already treated the case 7 = 0), then 

fJ B(i) cos(tX) dX = f cos(tX)[1 - exp[-2s,i]] dX/(1 - exp[-2,u]) 

T s-1 

1 cos(tX) E exp[-skI] * exp[-/] dX 
Ok=O 

(T/2)t 

< s cos(tX) exp[-A] dX ? 2s/(1 + t2). 

Therefore, when r = s, 

(8) tGy(P; Q)I _ n/1ir(x - t)2 

Combining the inequalities in (5), (6), (7) and (8), we have 

(9) o tt GP; Q)t etm (4.6) d(Q)h tPP 

Now we turn our attention to an estimate of the term 
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G.(P; Q) = {G(x + h, y; q, j)- G(x, y; (, q)}/h 

= {L(x + h-, y + t) - L(x + h- , y- 

- L(x-, y + q) + L(x- , y- 

Elementary considerations give 

1 fr sin(rX) sin(sX)(exp(-t- 1)A- exp(-tA)) 
G. (P; Q) r h J sh dX, if t 

> 
1, 

If'r sin(rX)sin(sX)(exp(-t' + I),u- exp(-t'g)) 
= Irhio -h dX, if t = O, 7rh JOsh,u 

where t' = - x)/h, t = (x - t)/h and r, s are as defined in the proof of part (a). 
Therefore, 

1If sX exp(- ty)(1 exp(-M)) 
IGx(P; Q)j - -r h shp dX, if t _ 1, 

1 I'r sX exp(-t'M)(1 - exp(-M)) 
rho sh, , ift?O. 

Hence, 

(10) IG.(P; Q)f < (1.8)2(1.3)q/ir(x - 

When t = 0, we easily obtain IGX(P; Q)j < ir-/2h2. 
Using the symmetry of L(r, t), we may write 

G.(P; Q) = {L(y + 7, x + h- - L(y - j, x + h - 

- L(y + 7, x - + L(x- , y - )Ih 

= -f (cos(t + 1)X- cos(tX)) 

*exp(-Jr - s ,u)I - exp(- Jr + sf ,u)} dX/sh ,u. 

Hence, 

G.(P; Q)t < (1.3) sji exp(s - r)ji dX for r > s, 

< (1r3)j"*rj exp(r - s)ji dX for r < s. 
h7r 

- 

Elementary considerations applied to this estimate yield 

(12) IG.(P; Q)j _ (4.3)7/r(y - 
7)2 

Applying (10) and (12) to the expression {(x _ t)2 + (y _ - )2 } IG.(P; Q)I gives 

G. G(P; Q)|I < (8 .6)77/7rp2Q 

The estimates for Gq(P; Q) and Gt(P; Q) can be derived, as we did for G(P; Q) 
and GX(P; Q), or, we may simply make the following observations: If P' = (x, y -h), 
then IG,(P; Q)I = IG(x, y; Q) - G(x, y - h; Q)I/h = IG,(P'; Q)I ' (4.6)d(Q)/pp IQ 
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But d(Q)/p2 Q < (2.5)d(Q)/p2 Q. Hence, IG.(P; Q)I < (2.5)(4.6)d(Q)pp2Q. A similar 

analysis applies to Gt(P; Q). 
The remaining results of (b) follow easily. For example, 

JG(P; Q)j = (I/h) tL,(x, y; {, -i) - L,(x, y; t,7, )1 

= IL(x - (, y + h + -q) - L(x- ,, y + ti) 

- L(x -, y + h - 71) + L(x -, y - )I/h 

= IGJP; Q)j = jLj(x, y; i, -t7) - Ljx, y; n, )j/h 

= IL(x - ,, y + 7) - L(x - y + t + h) 

- L(x -, y - n) + L(x -, y - n + h)I/h. 

Note here that care must be exercised when Q is near the boundary. For example, 
if Q = (Q, 0), then, clearly, lG,(P; Q)j = IG,(P; Q)j is not a meaningful relation, in 

that GD(P; Q) is not defined for Q on the boundary. In such a case, we note facts 
of the kind that IG,,(P; (, 0)1 = 1G,(P; (, h)l from which a proper inequality can be 
drawn. 

(c) For both cases in (4), we have that 
Ort/2) t 

GJ(P; Q)l < f cos(tX) dt = l/irht 

as exp(-sA) {sh(r + l)u - sh(r,I)} /sh , _ A exp(-s,u) ch(r + I),/sh A < 1 and 

exp(-r,u) sh(slu) (exp(-,u) - 1)/sh ,u < 1. Therefore, 

(13) IGJ(P; Q) < 17/r Ix - d for t $ 0, IGJ(P; Q)l < 1/h for t = 0. 

Now observe that 

1(4 .)1, < I *l:exp(-sA)[sh(r + 1) -sh(r)] d. 
(41) 

h 
- 

sh shr.t]d 

(14) - -h f exp((r - s)A)[1 + exp(-2r.t)] dX 

< - exp((r - s)X/1.8) dX _ 3.6/7r jy- -t 
1rh 

and 

I c exp(-r.)[sh(sAu)(exp(-.) 
-1)] dA ? 1.87wI -7I 

1(4.2)1 <Trh Josh jid .8t 71 

Combining (13) and (14) and using the inequality dpQ ? ly - ni + Ix - t7 gives 

J GJP; Q)j < (2 .8) \/2/1rp p Q. 

We may also write, using (9) and the fact that Isin xl < 1, 

IG.(P; Q)I < fh exp(-ttA) dA, x + h > (, 

< fr exp(-(t'u) dA, x ? 
:. 
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Hence, 

(15) IG,(P; Q)l < 1.8/ir Ix - . 

If t = 0, IG4(P; Q)I < I/h. Also, using the symmetry of L(a, ), 
IG (P; Q)l = 1 [cos(t + 1)X - cos tX][exp(- J - sl A) - exp(-Jr + sl ) dX 

JG.P;Q)l = 
2rrh osh , 

< 2 h exp((s - r))( - exp(-2sA)) dX, r > s, 

(16) -< 2 h exp((r - s)M)(1 - exp(-2rA)) dX, r < 
s, 

< 1.177r/177 - yl. 

If y = IG, G(P; Q)j < .9/h. From (15) and (16), we have 

IG,(P; Q)l < (2.97)\/2/lrppQ. 
(d) We have that 

Gss(P; Q) = {G(x + h, y; i, w) + G(x - h, y; {, t)-2G(x, y; I, l)}/h2 

={L(x + h - , y + q) -L(x + h -, y - ) + L(x - h - y + h) 

- L(x- h-, y- 7)-2(L(x-, y + q)- L(x- , y - q)) } /h2 

(17) = 2 f [cos(r -s)X - cos(r + s)X] 

[exp(- It + I I ,) + exp(-It t- A) - 2 exp(- I t I .)] dX/sh A 

2 [exp(- Jr -sl A)- exp(-Jr + sI A)] 

[COS(t + 1)X + cos(t - 1)X - 2 cos(tX)] dX/sh A. 

For the first integral in (17), we have 

IG.2(P; Q)I < 4h2 f exp(-tAt)[exp(- u) + exp A - 2] dA/sh A 1, x _ 

< 2 lexp(tA)[exp A + exp(-,) - 2] dX/sh ,Al, x < 

Now exp(- ,) + exp At-2 = 2 [ch At-1]. Taking the derivative with respect to , 
using the equality ch A = 2- cos X and the estimate sh At < At ch At gives the in- 
equality 2[ch A - 1] ? 3,U2 when X C [0, r]. Applying this result to (18) gives the 
estimate 

3 exp(- tA)A d, x 
>2 

rt (19) IG.2(P; Q)l < 
rh2 < 3(1.8) /(x _)2 

J exp(t)u dX, x < 

For the second integral in (17), we have 
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IGzz(P; Q)I <- 1 f X2 [exp(- Jr- sI 5 ) - exp(- r + sl ,d)] 
1z2 J sh p 

(20) < 13 f 

[exp(-Jr -s I ,) - exp(-Jr + s I y)] dX 

< (1.3)(1.8)2/7r(y _ 
- 

)2 

Combining (19) and (20) gives the estimate IGX(P; Q)j < 14V/2/7rp2 Q. From the 

equation AhG(P; Q) = -8(P; Q)/h2, we obtain the estimate 

IGyf(P; Q) I < 21 /pQ. 

Using (9), we may write 

IGzv(P; Q)I IGx(x, y + h; Q) - Gx(P; Q)t/h 

1 fT (sin(r+ 1)X-sin(rX))sin(sX)(exp(- t- l),u- exp(- tM)) dXt > I 

rh2 sh d 

(21) 
I |J (sin(r+ 1)X-sin(rX2))sin(sXt)(exp(- t'- I)u-exp(- t',u)) dX | < 0, 

irh2 I sh ,u 

< (1.8)2/r(X -)2 

From the results preceding (11), we may write 

I or 
IGxv(P; Q) = 27rh2 (COS(t + 1)X - COS(tX)) 

(22) *{ exp(-Jr + 1 -sI I.)- exp(-Jr-sI It) 

+ exp(-Jr + s + 1 ,ui)- exp(-tr + s ,It)} dX/sh ,u 

< (1.62)/7r(y - )2; 

we note here that lexp(-jr-s+ l1 ,i)-exp(-jr-sl ,u) ? exp(-jr-sl ,u)(exp ,u - 1), 

cos((t + 1)X) - cos(tX) = sin[(t + E)X]X with 0 ? E < 1, and exp(-Ir + s + ij , 

- exp(-Ir + sl ,u) < 0. Hence, 

JGXY(P; Q)J -< (6 .9)/7rp2 

(e) From (21), we have 

(23) IGxY(P; Q) - h2 f X2 exp(-.tA) dX ? (11.7)7/r Ix -13. 

Using (22), we obtain the estimate 

IGxv(P; Q)I < 5S2 fX exp((-r + s)ji) dX, r _ s, 
(24) 7rho 

< 2 J Xi exp((-r + s),u) A, r < s. - 
rh2o 

Hence we have that IGXY(P; Q)I < (11.7)q/ir ly - 7713. Combining this with (23) 

gives our estimate. 

From the first integral in (17), we obtain the estimate 
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IG,(P; Q)I < 
3rh2 J h o 

d x 
>ji 

<c 3 OrXA2 exp(- t') A, < t 
7rh 0 sh jt 

Therefore, IG.,(P; Q) = IG,(P; Q)l < 6(1.8)3n/ I x - 3 for P X Q. 
The second integral in (17) allows us to get the estimate 

)< 1 ft uA2 exp((-r + 
s)j) 

r 
ItG..(P; Q)t - < Aosid, r >s, 

-< 7rh2 l exp((-s + r)y) dX, r < s, 

Hence, IG.l(P; Q)j < 2(l.8)3,q/r ly - 773. Our proof is now complete. 
By the methods presented in the proof of the last theorem, we may prove the 

following result: If m is any integer, then constants Bm and Cm exist, depending only 
on m, such that 

IDmG(P; Q)I < Bm/ p Q and DmG(P; Q)l -< f7Cm/ pm+ 

where bmG(P; Q) is any mth order difference quotient taken with respect to the com- 
ponents of P. If the difference quotient is with respect to Q, we have IDmG(P; Q)I < 
yDm/pp+l 

Having examined the discrete Green's function for the upper half-plane, we 
may now observe that the same estimates hold for the lower half-plane. If we consider 
the discrete Green's function for the right half-plane or the left half-plane, then the 
same estimates of Theorem 1.1 hold except that we replace the quantity X by t in 
parts (b) and (c) of that theorem. 

For the mesh region described, let us look at the line y = -x. This intersects 
grid points at a spacing of V12h. Let G(P; Q) be the discrete Green's function for 
the region to the right of this line, i.e., mesh points P = (x, y) such that y > -x. 
Let Q = (Q, -q) be a mesh point in this half-plane. Let Q' be the reflection of this point 
about the line y =-x; i.e., Q' = (-n, -c). Then we have that 

G(P; Q) = L(x-A, y - 7) - L(x + q, y + t) 

= f exp(- It ,u)[cos((y + t)X/h) - cos((r - s)X)] 

+ cos((y + O)X/h)[exp(- /x + 7)1 i,/h) - exp(- It ,I')] dX/sh ,u. 

As these integrals are similar to those already estimated, we may state the next 
theorem. 

THEOREM 1.2. If m is a nonnegative integer and if G(P; Q) is the discrete Green's 
function for the mesh region to the right or to the left of the line y = x or y = -x, 
then there exist absolute constants Dm and Em such that 

ID(m)G(P; Q)l < Dm/PQ 

and 

bD(m)G(P; Q)I < Em t(Q + t)/21/pmQ. 
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2. Some Other Infinite Regions. Let S be the strip bounded by the lines 
y = 0 and y = a; we assume with no loss of generality that a/h is an integer. Let 
G8(P; Q) be the discrete Green's function associated with the operator Ah and the 
set Sh; Sh is the set of grid points in the interior of S. We have the following result. 

THEOREM 2.1. If GH(P; Qj) is the discrete Green's function for the upper half- 
plane with singularity at Q; = j, q ;), then 

(1) GS(P; Q) = 1 (-l)'G"(P; Qi), 
j =O 

where Q = Qo = (Q, 7), Q, = (Q, 2a - r), Q2 = (Q, 2a + r7), Q3 = (Q, 4a -r), 

Q4 = (, 4a + n), * .., Q2i = (,2ja + ), Q2i+1 = (, 2(j + 1)a- j),* 

In fact, there exist absolute constants Hm, Jm and M, each independent of h, such 
that 

(2) D(m)GS(P; Q)I < Hm d(Q)/pm+1, m = 1, 2, 3, 

(3) ID(m)Gs(P; Q)I < Jm/pmQ m = 1, 2, 

and 

(4) 0 < Gs(P; Q) < M min(d(P), d(Q))/ppQ, 

where d(X) is the distance of X to aSh. 
Proof. We first establish the convergence of (1). If Ix - j h-' = t, Si = n7ilhg 

y/h = r, then we may write (1) as G8(P; Q) = GH(P; Q) + E7=1 (-1)'GH(P; Q;). 
But 

E (-1)G H(P; Qi) = 2 E (-1)' cos(tX) exp[(- Si + r - 1)u] e-2K dX 
j=1 j=1 JO I~ K=O 

where S, satisfies these relations by virtue of the definition of the 77. 

Now we will show that, for any K, the series 
co r 1 

Z (-)'f)i cos(Xt) exp[(-Si + r - 1 - 2K),u] dX 

is convergent; hence, any finite sum of such series is convergent. Let 3C(t, X, ,, Si, K) 
be the integrand of the series above. Let a = f 3C dX and b; = Xf 3C dX where 
e C (0, 7r/4t]. Then we will show that 

Z1(K) = (-1)'ai and Z2(K) 1)bib 
j=1 j=1 

is convergent. 
We have that a i- a j+, > 0 as Si < Si,+. Also, 

lim ai < limj exp[(-Si + r - 1 - 2K)X/3] dX = 0. 
j-e130 j-.o, 0 

Therefore, Z1(K) converges. 
Now we have 

Z2(K)= ( l)i f f,(X) dX = f [f (-1)i (X)] dX 
with ff cos (t)1exp[(-5, 1 + K) Th/4t =al 

with f; cos (t X) exp [(-Si;- I + r- 2K),u]. The family If j(X) I is a uniformly 
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convergent sequence of continuous functions for X C [E, ir]. In fact, 

1f1(X)j ? exp[(-S3 - 1 + r -2K).t] ? exp[(-S3 - 1 + r- 2K),u(e)] 

with ,u(E) > 0 the value of Ls at X = e. Hence, Z2(K) converges and we may write 

Z2(K) = jcos(t) exp[(r - 1 - 2K),I] , (-1)e_s"'A. 
j=O 

Therefore, (1) is well defined and we have 
r-1 

Gs(P; Q) = E Z2(K) + ce 
K=O 

where E > 0 and 0 < c < 1; this last term is due to the fact that Z1(K) < e. 
Now we show that G8(P; Q) = 0 for P E aSh. This is clear when y = 0. Now we 

look at the case that P is on y = a. Let 8N be the Nth partial sum of GS(P; Q). Re- 
arranging the entries, we have 

SN I {G'(P; QO) G'(P; QO) + + (- 1)N+lG'(P; Q 2) 

+ (- 1)f+l [L(P; QN-1) - L(P; QN)]} 

where QT = (Q, j- ) and G'(P; Qj) is the discrete Green's function for the lower 
half-plane with boundary y = a. Now, along y = a, we have that I SNI = IL(P; QN-1) - 
L(P; QI)I; this approaches zero as N -o . This may be seen by considering L(P; QN-1) 
- L(P; QN) as the discrete Green's function for the half-plane with boundary midway 
between QN -1 and QN. 

From the uniform convergence of the series representing GS(P; Q), we have that 
co 

AhGg(P; Q) = E (-1)(_1)i 8(P; Qj)/h2 = -8(P; Q)/h2. 
i-O 

Therefore, Gs(P; Q), as we have constructed it, is the discrete Green's function 
for the strip. 

We now verify the estimate in (2). We have that 
N 0 

IGS(m)(P; Q)I < 1IE (- 1)iGH(m)(p; Qi) + E (-I)G H()(p; Qi) 
j=O i=N+l 

Let W1(N) (and W2(N)) be the first (and second) summand in the expression above. 
Then we have that 

| W2(N)l < C E l/pmli = 0(1/N). 
j =N+l1 

By simple rearrangements, we may write 

W2m (N) = m)(N) and (N)= V2m)(N) 
where 

(N-1)/2 

Vm)(N) = x: [G2'(P; 7, 2i) - G27(P; i, -72j)] N odd, 
i =0 

(N-2)/2 

- E [G2i(p; i, 2,)- - G2i(p; ,- 2i)] + GH(P; t, flN) , N even, 
i =0 
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and 
(N-2)/2 

V2 (N) = G (P; E, n) + fi [G2'-1(P; i, ?2j+i) G2'+1(P; , _ +)] , 
j ~~~~~=O 

N even, 

(N-3) /2 

= G H(P; i 7) + E [G2i+l(p; i, 72i+l) - G2i+l(p; 7 _2+1)] 
j =0 

- G H(P; i, 77N) 

N odd, 
where 

G'(P; (, mj) = L(P; (, qi+,)- L(P; (, qj) 

and 

G'(P; (, -ti,) = L(P; i, -q+i) - L(P; (, -q,). 

We will now estimate the summands in Vim')(N) and V2m) (N). With the aid of 
Lemma 1.1, we have that 

Y-h 

1G2i(X, y; G, 2i)-G2i(X, y; t,-2,)I = h E G2i(x, z; Q2i) 
Z =-V 

But 

G2i(x, y; i, n2i) = G21(X, y- (f72i + 772i+1)/2; t, f72, - (72i + ?72i+1)/2) 

= GH(X, y'; i, (fl2i+1 - 2i)/2) 

where y' = (772i+1 + 712i)/2. Hence, 

IG2i(m)(P; Q2i)I < Bm(a - ,)/pm+l IG 2m)(P; Q2)1 < Am/P-Q2j 

By a similar analysis, we have 

|G2i+ )(p; Q2i+l)I < Bmq/pm+l IG 2i+1(m (P; Q2j+1)I < Am/PQ2i+m 

Therefore, 
(N- 1)/2 

V,m)(N)I < E 2y(a - q)Bm+i/PQ2 + 2 !GOm)(P; Qo)II N odd, 
ij=1 

(N-2)/2 

2y(a - q)Bm+i/ppm+2i + 2 IGO(m)(P; Qo)I + IGH(m)(p; Q)I' 
ij=1 

N even. 

Observe that G?(P; Q) 7 GH(P; Q) and IG0(x, y; (, 77) - G(x, -y; (, 77)1 < 21G0(P; Q)I. 
Now use the estimate 

(N-1)/2 

1/pmQ2 ? 1/ppm2 + 7r/2V2apm1 

considering separately the cases pPQ > a/2 and pPQ < a/2, to get 
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I Vlv(N)I < {2Bm + 4.2Bm+.}(a - 77)/pPQ' + 0(1/N). 

By an analogous method of reasoning, we have 

I V2 (N)l ? {Bm + 9.5Bm+i}l/pn+1 + 0(1/N). 

Combining our results, we have that 

IGS(m)(P; Q)I < {2Bm + 9.5Bm+i} min{?1, a - 71PQ 

This establishes (2). 
We will now prove (3). If pPQ > a, then pPQ ? d(Q). Hence, 1/pPQ > d(Q)/ppn1. 

If PPQ < a, then 
N ao 

E G H(m(P; Q2i) - GH(m)(P; Q2j+1) - IQ2i+1 - Q2il E Am/PpQ 2 
i=2 i =1 

< 2(a - fl)Am7r/2 V/2appQ < 7r Am/ \/2p . 

Therefore, (3) is proved with Jm = max {1rAm//2, Hm}. 
We now proceed with (4). Here we need only show that 0 ? GS(P; Q) < Cd(Q)/ppQ 

since Gs(P; Q) = Gs(Q; P) by Lemma 1.1. Both of these estimates follow easily from 
the following result: If AhH ? 0 in Sh, if limpe, H(P) = 0, and if H(P) ? 0 on aSh, 
then H(P) > 0 in Sh + aSh. Now let H = GH(P; Q) - G8(P; Q), with GH(P; Q) the 
discrete Green's function for the upper half-plane y = 0 or the lower half-plane 
y = a, to conclude the proof of the theorem. 

3. Rectangular Regions. Let R be the rectangular region determined by the 
vertices (- c, 0), (b, 0), (b, a) and (- c, a); here a, b and c positive numbers. We assume, 
with no loss in generality, that a/h, b/h and c/h are integers. Let G(P; Q) be the 
discrete Green's functions associated with Rh and Ah. We then have the following 
result. 

THEOREM 3.1. If i is a nonnegative integer, then we define $, to be the ith element 
of the sequence 0, 2b, 2b + 2c, 4b + 2c, 4b + 4c, 6b + 4c, 6b + 6c, . , and if i is a 
negative integer, then we define i, to be the ith element of the sequence - 2c, -(2b + 2c), 
-(2b + 4c), - (4b + 4c), *. . Let GS(P; Q) be the discrete Green's function for 
the strip Sh determined by the lines y = 0 and y = a. If we take Q = (0, q) and Qi = 
( i, n), then we have 

0" 

(1) GR(P; Q) = E (- 1)'G(P; Qj). 

The case of the general Q = (Q, r7) is handled by a simple translation. Moreover, there 
exist absolute constants Kin, Lm and C which depend upon the diameter of R, such that 

(2) ID(im)GR(P; Q)I < Km/pm 

I ') G(; ) < Lmd(Q)IpmQ 
and 

GR(P; Q) < C min(d(P), d(Q))/ppQ, 

where d(X) is the distance of X to aRh. 
Proof. We first show that the sequence in (1) is convergent. Let i > 0. Then we 
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easily have that limi, GS(P; Qj) = 0. We also claim that Gs(P; Qj) > Gs(P; Qi+l) 
for every P E Rh To see this, let T = {(x, y): (x, y) E S, x < (Qj + ti+ )/2}. Along 
the line x = (Qj + ,+1)/2, we have that G8(P; Qj) = G8(P; Qi+ ). This is also true 
along the aSh. Therefore, G8(P; Q) - G8(P; Qi+,) _ 0 in Rh by the extended mono- 
tonicity theorem which was stated at the end of the proof of Theorem 2.1. The 
series in (1) is therefore convergent as it is a monotonically decreasing alternating 
series with its terms tending to zero. A similar analysis applies to the case i < -1. 

Now we show that G(P; Q) = 0 for P E aR,. This is clear on y = 0 or y = a. 
Let P E aR, with x = b. Then 

n -nf 

G(P; Q) = E (-1)YG(P; Qj) + 61n+l + E (-1) Gs(P; Qj) + R-n-1. 
i=O i=-1 

Now |(Rn+ < Gs(P; Qn+2) and l(R-_ -l < Gs(P; Q (n'+l)). Therefore, 

G(P; Q) = G8(P; Q0) - G8(P; Q1) + *. + (_-)n+l [G8(P; Qn+) - G(P; Q-)] 

+ ((Rn+l + (R_ n-1). 

Now the midpoint of ,-n and in+j is x = b and G8(P; Qn+1) = Gs(P; Q-n) along this 
line. Therefore, for P = (b, y) E aRh, we have G(P; Q) = 0. A similar analysis applies 
to the line x = -c. 

By methods of Section 2, we easily have that Ah,G(P; Q) = -5(P; Q)/h2. 
We can also write GR(P; Q) as the sum of the discrete Green's functions G'(P; Q') 

for the strip Sh bounded by the lines x = -c and x = b. That is, 
aoD 

G R(P; Q) = E (-1) G'(P; Q) 
i=-aoD 

where G'(P; Q') is the discrete Green's function for Sh and Qi is an element of the 
sequence 77, 2a-71, 2a + 7q, 4a-71, 4a + 77, ... for i = 0, 1, 2,* and an element 
of the sequence - ,-(2a- 7),-(2a + 7),-(4a - q), -(4a + 77), * for i = 

-1, -2, -3, - 
Now IG'(m)(P; Q')j < Jnd'(Q)/p+l and IGS(m)(P; Qj)j < Jnd(Q)/lp;1 where 

d'(Q) = min (b, c), d(Q) = min (7q, a - 7), and min (d'(Q), d(Q)) is the distance from 

Q to aR,. 
We also have the estimates, from the two different representations, 

IGR(m) (p; Q)I I IGS(m)(P; Q)I + | E 1)jGs(P Q()m 
ij=-O~ ; i# o 

i=-- ;i#o 

Now proceed as in the proof of Theorem 2.1. 
To prove (2.3), we may suppose that d(P) < d(Q). Then place a half-plane H 

along the side of aRk whose distance to P is minimal. The maximum principle shows 
that GH(P; Q) dominates GR(P; Q). Our proof is complete. 

The results of this theorem are a significant improvement over the estimates in [5] 
where the order of the singularity in the mth order difference quotient was pp-mj 

with e > 0. 
The rectangle formed by rotating the above rectangle through any integer multiple 



DISCRETE GREEN'S FUNCTIONS 75 

of 7r/4 has a discrete Green's function which satisfies the same estimates as in Theorem 
3.1. 

In our next result, we obtain slightly stronger estimates on the discrete Green's 
function for a rectangle. 

THEOREM 3.2. Estimates of the following type for the discrete Green's function 
over a rectangle, or triangle may be derived: 

(a) I GR(p; Q)j < Cdy(P)d.(Q)dy(Q)l 4Q 
(b) GR(P; Q) < Cdx(P)dy(P)dx(Q)dy(Q)/,4Q, 
(c) GR(P; Q)I < Cdx(P)dx(Q)d,(Q)/plQ4 
(d) Go(P; Q)S I <Cdy(p)di(p)dw(Q)dP(Q) dPH 
(e) IGVRf(P; Q)j GCdx(P)dx(Q)dy(Q)dx(Q) hppQ 
(f) JGzC(P; Q)j < Cdx(Q)dy(Q)C(P4 

where dP(P) or d(P) is the distance, in the x or y direction, of P to the boundary. Esti- 
mates of a similar type are validfor difference quotients in Q. 

Proof. The argument proceeds briefly as follows: 

(a) From Section 1, we have IG',,(P; Q)j < d,(p)l 4Q. Hence 

G R(P; Q) = GRH(P; Q)- (I)P Q E h E GH"(p; ZQ)I 
i=o j=O -Z,=Q2 i 

ao 

< C d8Q)d(P)pp; < CdY(Q)dy(P)lpQ 

2 =0 

Now we obtain our result from the estimate 

+ co + co Q 2i+1 

GR(P; Q) = E Gd(P; Qi)(-,1)= h Gs(P; Wi) 
=-CO i=-OC Wi=Q2i 

+ 0 

< C Ed dX(Q)d/(Q)d,(P)1p4 < Cdx(Q)dP(Q)dyp(p)e4c. 
i =-ao 

(b) Let P' be the point on aRh nearest P in the x direction. Then 

Rc(p; Q) C dP (p; Q)/-G(P,; Q) < Cd(P)d R(Z; Q)e 
Z =P 

< C d c(p)dh(p)de(Q)d(Q)t p4 . 

The remaining parts of the theorem are proved similarly. 
Thsqae inoth results may be used to improve Theorem 1.I as seen in the next theorem. 

THEOREM 3.3. Estimates of the following type, for th ree sie Green's function 
over a half-plane, are valid: 

(a) GH(P; Q) _ Cd(Q)d(p)l 2 

(b) I GH(p; Q) I < Cd(Q)d(P)/ p3 Q, I GH(P; Q)l I_ Cd(Q)d(P)/ p3Q, etc., 

(C) IGZH(p; Q)j < Cd(p)d(Q)l 4 Q, I Gfgp; Q)l I_ Cd(p)d(Q)l 4pQ, etc. 
Here C is an absolute constant which is independent of h. 

Proof. As an example of the method of proof we will establish (c). Let R be a 

square in the half-plane Hh one side of which is coincident with the boundary of Hh. 

Construct Rh such that the distance from P or Q to the three sides of Rh, none of 
which is on aHh, is greater than max (d(P), d(Q), pPQ); here d(X) is the distance from 
X to the aHh. Then 
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GR(P; Q) - Gz(P; Q) = h E GH(Z; Q)GR(P; Z) 
ZeORh' 

where &R1 = aRh - (Rh C\ &aHh) and the subscript n denotes a normal difference 
quotient with respect to the moving variable. Hence, 

IG R (P; Q) -G H (p; Q)l I< Cd(Q)d(P)l p4Q 

and 

IGZ HZ(p; Q) I< Cd(Q)d(P)l pp 

Many additional properties of the discrete Green's function may be simplified 
by our next result. 

THEOREM 3.4. Over a rectangle Rh, the discrete Green'sfunction GR(P; Q) satisfies: 

GR (P; Q) = G`(P; Q) and GR(P; Q) = GR(P; Q). 

Proof. Let U(Z) = GZ(Z; Q) and V(Z) = GR(P; Z). Since we may make, by 

reflection, U(Z) = 0 on aRh, our result follows by an application of the discrete 

Green's identity; see [5]. 
The above results are apparently not valid over other simple regions such as 

bounded L-shaped regions or knife-shaped regions. 
We will now state a final improvement of earlier results; the proof is similar to 

that of Theorem 3.3. 
THEOREM 3.5. Estimates of the following type are valid for the discrete Green's 

function over an infinite strip. 
(a) 0 < G8(P; Q) ? Cd(Q)d(P)/ppQ, 
(b) IG'5(P; Q)j < Cd(Q)d(p)l 

3 
Q, 

I Gs (P; Q)l I_ Cd(Q)d(p)l 
3 

Q, I G (P; Q)l < 

Cd(Q)d(p)l 3 Q, [G,(;Ql< Cd(Q)d(p)l 3Q 

(c) [GxS(P Q) Cd(p)d(Q)l 4 
Q, IGS(P Q) Cd(p)d(Q) tp )p x(;Qj/ppQI JGxsE(P; Q)j < 

Cd(P)d(Q)/ppQ, 7Gj(P; Q)j < Cd(P)d(Q)/p4pQ, etc., 
where d(P) is the distance of P to the boundary of Sh and C is a generic constant in- 
dependent of h. 

4. General Domains. Let Q be a plane region. Place a square grid on the plane 
with grid width h. We say that a grid point P Ez Qh if P and the four grid neighbors 
of P are in Q. Let a2Qh be those grid points which are in Q but not in Qh. 

Let hn be some sequence tending monotonically to zero as n tends to C. Then 
we call Q a discrete h-convex set if for each n and for each P E a Qh at least one of 

the lines through P, which is parallel to a coordinate axis or makes an angle of 7r/4 
with a coordinate axis, has the entire set Qhn to one side of this line. Examples of 

discrete h-convex sets are triangles, rectangles, circles, ellipses and knife-shaped 
regions (e.g. the region formed by the coordinates (0, 0), (c, 0), (c, 2c) and (0, c)). 

The concept of discrete h-convex is essential for our estimates in this section. 
We shall assume that our regions satisfy this condition and, when we write Qh, we 

mean an element of the sequence { Q } where the sequence { h,,} is that sequence 
used in the definition. 

We remark that the estimates we have obtained to date hold for half-planes, 
quarter-planes, eighth-planes, strips, triangles and rectangles. 

We will now state and outline the proof of our first result. 



DISCRETE GREEN'S FUNCTIONS 77 

THEOREM 4.1. Let Q be a discrete h-convex set and let G(P; Q) be the discrete 
Green's function associated with Q, and A,. Then there exist absolute constants MO, 
M1, No, N1, all independent of h, such that 

fd(P)1 

IG(P; Q)I < Mo1 or F PPQ; IG(P; Q)I < Nod(P)d(Q)/pPQ and 

(1 ) tld(Q)J 

1 G "'(P; Q) I-< Ml/PP Q; IG (1(P; Q)lI < N, d(P)l p Q 

Proof. We take the discrete Green's function for a half-plane determined by any 
point P E a%. The Monotonicity Theorem and the results of Section 3 give the 
estimate in (3.1). 

For the estimate in (3.2), we proceed as follows: 
Case 1. min {d(P), d(Q)} > PPQ. 
Construct, about Q, a square Sh of (approximate) sidelength pPQ. If this is not 

possible, as in the case p Q = h, construct the square of sidelength 2h or 3h; our 
argument will proceed in a similar way. Let G(P; Q) be the discrete Green's function 
for Sh. We will use the following form of the discrete Green's formula: 

h2 E { U(R)AhR(R) - V(R)Ah U(R)} = h , { U(R) VJ(R) - Vn(R) U(R)}. 
RES, REOSh 

Substitute G(R; Q) = U(R) and G(P; R) = V(R) to get the representation 

(2) G(P; Q) = -h E Gn(R; Q)G(P; R). 
ReaSh 

Hence, 

IG'1'(P; Q)I = h E GOn1"(R; Q)GQ(P; R) 
REaSh 

< max{C. h(ppQ/h)(d(R)/h pPQ)(d(P)/ppQ)} < Nld(P)/pPPQ 
R 

Also, we have that 

IG(P; Q)j < max{ Ch(ppQ/h)(d(R)d(Q)/hp2PQ)(d(P)/ppQ)} 
R 

=< Ml d(P)d(Q)1pPPQ . 

Case 2. min {d(P), d(Q)} < pPQ. 

If d(Q) > pPQ, then we will proceed as in the case above. 
If d(Q) < PPQ, construct a square Sh of sidelength d(Q) about Q. Now let Sh be 

the region formed by the intersection of Qh and Sh. If we have d(Q) < ppQ/2, the 
boundary of Sh and aQh are coincident. From (2), we obtain the estimate 

IG(1)(P; Q)I = -h , G(1)(R; Q)G(R; P) 
REaSh 

< max { hC(d(Q)/h)(d(R')/hpRQ)(d(R)d(P)/pRP)} ? Nld(P)/pp, 
R 

where we observe that d(R) < 2d(Q) and IG6nl'(R; Q)I = IG(1(R'; Q)/hl, with R' a 
grid point h units from the boundary of Sh. Our proof is easily completed. 
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At this point, we remark that the estimates in (1.2) were obtained as a result of 
the estimates in (1.1). The estimates in (1.1) were completely dependent on the assump- 
tion that Q is a discrete h-convex set. 

In our next result, we will see that an obtuse corner on the a2h produces a compli- 
cation in establishing estimates on difference quotients for general regions. These 
complications are present in the continuous theory but not quite as bad as our esti- 
mates predict in the discrete case; see [4]. This situation seems to indicate that our 
estimates may only be slightly improved; at least with reference to the five-point 
approximation of A. 

THEOREM 4.3. Let Oh be a discrete h-convex set and let G(P; Q) be the discrete 
Green's function for Ah over Oh. Then there exists an absolute constant N such that 

IG 2)(; ) Nd(Q)ld' P) Q, 

where d'(P) is the minimum of pp Q and the distance of P to the nearest obtuse angle of Qh. 

Proof. The argument proceeds as in the proof of Theorem 4.1. Construct a 
square Rh, with center P, of (approximate) sidelength pPQ. Extend G(P; Q) to all 
of Rh by reflection. This is always possible if Rh does not contain the vertex of an abtuse 
angle. By the use of Green's Theorem, we have 

G(P; Q) = h E GR(P; Z)G(Z; Q). 
z 

Thus, 

IG(21(P; Q)I < h Z RG (2)(P; Z) I G(Z; Q) 
ZeaRh 

< N*h E (l/p3 z)(d(Q)IpzQ) < Nd(Q)/p3 Q 
Z e dRh 

If Rh contains a vertex of an obtuse angle, a discrete harmonic extension of 
G(P; Q) to all of Rh is impossible. Hence, we construct a square of sidelength equal 
to d'(P) the distance of P to the vertex of the obtuse angle. We then have 

IG(21(P; Q) I <Nh E (I/p3z)(d(Q)d(Z)/p2Q) 
? 

Nd(Q)/d'(P)p2Q. 
ZeaRh 

This follows from the fact that the perimeter of the square is 4d'(P) and d(Z) < 3d'(P). 
Combining these two results, the theorem follows. 

5. Discrete Green's Functions and Variable Coefficients. Let R be a rectan- 
gular region with one side parallel to a coordinate axis. Let G(P; Q) be the solution 
to the problem 

(1 ) a(P)G.x(P; Q) + c(P)Gvv(P; Q) = - 5(P; Q)/h2, P E Rh, 

G(P; Q) = 0, P ( aRh, 

where difference quotients in (1) are with respect to the components of P and where we 
assume that, for all P E R, there exist positive constants X and L such that 

(2) X ? {a(P), c(P)} _ L. 

In this section, we shall indicate how we may extend the analysis of the preceding 
sections to obtain estimates on the solution to (1). We shall only consider rectangular 
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domains; modifications necessary to extend the results of Section 4 will be clear from 
this case. 

Our estimates, in this section, on the orders of growth of difference quotients of 
the solution to (1) will be an improvement and an extension of the results in [5, p. 31]. 
Our proof will rest heavily on the method of proof in [5, Theorem 3]. We will also use 
a result of Bramble and Thomee [1, Theorem, p. 585] on the rate of growth of G(P; Q); 
in particular, their result says that { G(P; Q) }' is summable for any power p ? 0. 

THEOREM 5.1. Let G(P; Q) be the solution to (1). If a(P) and c(P) are a-Hdlder 
continuous over R with common Hdlder constant L,a and if the condition in (2) is satisfied, 
then there exist constants Sm and Tm, which depend upon L, X, La,, diam R and a but 
are independent of h, such that 

(3) ID(m(P; Q)I < S.1/pP; p b(m)(P; Q) I < Tm min{d(P), d(Q)}/p 1. 

Proof. We reflect G(P; Q) into a region Qh D Q with Qh described in [5]. About 
Q E Oh and each of its reflected images, we construct squares Mh(Q) of sidelength 
NQh where NQ is independent of h and Q. Let P0 C Qh but not in any of these squares 
Mh(Q). About P0 construct a square Kh(PO) C Q - { Q } where { Q } is the set Q and 
its reflected images. Let C1 and C2 be positive numbers in (0, 1) such that 

(4) PPOQ > C2pPO > diam(Kh(Po)) > CpPp0Q 

and, for every R E Kh(PO), 

(5) PRQ ? (1 - C2)PP Q; 

note that NQ will depend on C1 and C2. Let G'(P; Q) be the solution to the problem 

(6) a(Po)G't(P; Q) + c(Po)G'(P; Q) = - a(P; Q)/h2, P C Kh(PO), 

G'(P; Q) = 0, P E aKh(PO). 

Then we have the representation 

(7) G(P; Q) = h2 G'(P; W)F(W) + H(P), 
WeKh(Po) 

where F(W) = [a(PO) - a(W)]G,?(W; Q) + [c(Po) - c(W)]G,v(W; Q) and H(P) solves 
the problem a(PO)H,x(P) + c(PO)Hf,(P) = 0 for P C K,L(Po) and H(P) = G(P; Q) 
for P E aKh(Po). Now we may estimate difference quotients of the solution to (6), 
as we did in Theorem 3.1, but now we must account for the coefficients; note that if 
L(x - (, y - -q) is as defined in (1) of Section 1 but with a ch ,u + c cos X = a + c, 
then the discrete Green's function for the operator in (6) over 7r+ is given by 
{L(x - ,y+ q) - L(x - ,y- -q)a. 

Let 

M2(G: P; Q) 
max ppQ IGxz(P; Q)|, PPQ IGvv(P; Q)|, PPQ IG..(P; Q)I P, Q C Rh} 

Suppose the diam R is so small that 

(8) 12(diam R)aHa(l + N2Q)K2 < a 

where K2 is derived from (6) as in Theorem 3.1. Then we may estimate M2(G: P; Q) 
and prove our theorem. 
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Now let us remove the constraint in (8). Let R be a rectangular domain. Then 
M2(G: P; Q) occurs at some point in Rh; call the point P0. About P0 draw a square 
of diameter equal to min(d0, pp,Q/2) where do is a number which when substituted 
for diam R in (8) produces an equality. Our theorem now follows. 
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